Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.650
Filter
1.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698521

ABSTRACT

Fusarium pseudograminearum is an important plant pathogen that invades many crops (Zhang et al. 2018). Since it was first discovered in Australia in 1951, F. pseudograminearum has been reported in many countries and regions and caused huge economic losses (Burgess et al. 2001). In 2012, crown rot of wheat caused by F. pseudograminearum was discovered for the first time in Henan Province, China (Li et al. 2012). Wheat (Triticum aestivum L.) is one of the most important food crops in Xinjiang Uygur Autonomous Region (XUAR), with 1.07 million hectares cultivated in 2020. In June 2023, a survey of crown rot disease was carried out in winter wheat cv. Xindong 20 in Hotan area, XUAR, China (80.148907°E, 37.051474°N). About 5% of wheat plants showed symptoms of crown rot such as browning of the stem base and white head. The disease was observed in 85% of wheat fields. In order to identify the pathogens, 36 pieces of diseased stem basal tissue, 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, then rinsed three times with sterile water and placed on potato dextrose agar (PDA) medium at 25°C. A total of 27 isolates with consistent morphological characteristics were obtained using single-spore technique (Leslie and Summerell. 2006), and the isolation rate was 75%. The isolates grew rapidly on PDA, produced large numbers of fluffy white hyphae, and pink pigment accumulated in the medium. The isolates were grown on 2% mung bean flour medium and identified by morphological and molecular methods. Macroconidia were abundant, relatively slender, curved to almost straight, commonly two to seven septate, and averaged 22 to 72 × 1.8 to 4.9 µm. Microconidia were not observed. The morphological characters are consistent with Fusarium (Aoki and O'Donnell. 1999). Two isolates (LP-1 and LP-3) were selected for molecular identification. Primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') were used to amplify a portion of the EF-1α gene (O'Donnell et al. 1998). The two 696 bp PCR products were sequenced and submitted to GenBank. The EF-1α gene sequences (GenBank Accession No: PP062794 and PP062795) shared 99.9% identity (695/696) with published F.pseudograminearum sequences (e.g., OP105187, OP105184, OP105179, OP105173). The identification was further confirmed by F. pseudograminearum species-specific PCR primers Fp1-1/Fp1-2 (Aoki and O'Donnell. 1999). The expected PCR products of 518 bp were produced only in F. pseudograminearum. Pathogenicity tests of LP-1 and LP-3 isolates were performed on 7-day-old seedlings of winter wheat cv. Xindong 20 using the drip inoculation method with a 10-µl of a 106 macroconidia ml-1 suspension near the stem base (Xu et al. 2017). The experiment was repeated five times in a 20 to 25°C greenhouse. Control seedlings were treated with sterile water. After 4 weeks, wheat seedling death and crown browning occurred in the inoculated plants with over 90% incidence. No symptoms were observed in the control plants. The pathogen was reisolated from the inoculated plants by the method described above and identified by morphological and PCR amplification using F. pseudograminearum species-specific primers Fp1-1/Fp1-2. No F. pseudograminearum was isolated from the control plants, fulfilling Koch's postulates. To our knowledge, this is the first report of F. pseudograminearum causing crown rot of winter wheat in XUAR of China. Since F. pseudograminearum can cause great damage to wheat, one of the most important food crops in China, necessary measures should be taken to prevent the spread of F. pseudograminearum to other regions.

2.
Article in English | MEDLINE | ID: mdl-38743801

ABSTRACT

The application of composite solid electrolytes (CSEs) in solid-state lithium-metal batteries is limited by the unsatisfactory ionic conductivity underpinned by the low concentration of free lithium ions. Herein, we propose an interface design strategy where an amine silane linker is employed as a coupling agent to graft the Li7La3Zr2O12 (LLZO) ceramic nanofibers to the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer matrix to enhance their interaction. The hydrogen bonding between amino-functionalized LLZO (NH2@LLZO) and PVDF-HFP not only effectively induces a uniform incorporation of high-content nanofibers (50 wt %) into the polymer matrix but also furnishes sufficient continuous surfaces to weaken the complexation between PVDF-HFP and Li-ion carriers. Additionally, introduction of the hydrogen bond and Lewis acid-base interplay strengthens the interfacial interactions between NH2@LLZO and lithium salts that release more free lithium ions for efficient interfacial transport. The impact of the linker's structure on the dissociation capacity of lithium salts is systematically studied from the steric effect perspective, which affords insights into interface design. Conclusively, the composite solid electrolyte achieves a high ionic conductivity (5.8 × 10-4 S cm-1) by synergy of multiple transport channels at ceramic, polymer, and their interface, which effectively regulates the lithium deposition behavior in symmetric cells. The excellent compatibility of the electrolyte with both LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes also results in a long lifetime and a high rate capability for full cells.

3.
Cardiovasc Diabetol ; 23(1): 161, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715070

ABSTRACT

BACKGROUND: The association between the triglyceride-glucose (TyG) index and subclinical left ventricular (LV) systolic dysfunction in obese patients remains unclear. This study aimed to investigate the relationship between the TyG index and LV global longitudinal strain (GLS) in obese patients. METHODS: A total of 1028 obese patients from January 2019 to January 2024 were included in the present study. Clinical parameters and biochemical and echocardiographic data were obtained from the participants. LV GLS was obtained from the GE EchoPAC workstation for evaluating subclinical LV function. The TyG index was calculated as Ln (fasting TG [mg/dL] × fasting glucose [mg/dL]/2). LV GLS was compared between obese patients with a high TyG index and those with a low TyG index. RESULTS: Obese patients with a high TyG index had greater incidences of hypertension, diabetes mellitus and hyperlipidaemia. The LV GLS was significantly lower in the high TyG index group than in the low TyG index group (P = 0.01). After adjusting for sex, age, body mass index, heart rate, hypertension, diabetes mellitus, dyslipidaemia, blood urea nitrogen, serum creatinine, LV mass and LV hypertrophy, the TyG index remained an independent risk indicator related to an LV GLS < 20% (OR: 1.520, 95% CI: 1.040 to 2.221; P = 0.031). CONCLUSIONS: We concluded that an increase in the TyG index is independently associated with subclinical LV systolic dysfunction in obese patients.


Subject(s)
Asymptomatic Diseases , Biomarkers , Blood Glucose , Obesity , Triglycerides , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Male , Female , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/epidemiology , Obesity/diagnosis , Obesity/blood , Obesity/physiopathology , Obesity/epidemiology , Obesity/complications , Middle Aged , Triglycerides/blood , Blood Glucose/metabolism , Biomarkers/blood , Adult , Risk Factors , Risk Assessment , Systole , Aged , Cross-Sectional Studies , Predictive Value of Tests , Retrospective Studies
4.
Small ; : e2401503, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705860

ABSTRACT

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.

5.
J Agric Food Chem ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709250

ABSTRACT

Food quality and safety are related to the health and safety of people, and food hazards are important influencing factors affecting food safety. It is strongly necessary to develop food safety rapid detection technology to ensure food safety. As a new detection technology, artificial nanochannel-based electrochemical and other methods have the advantages of being real-time, simple, and sensitive and are widely used in the detection of food hazards. In this paper, we review artificial nanochannel sensors as a new detection technology in food safety for different types of food hazards: biological hazards (bacteria, toxins, viruses) and chemical hazards (heavy metals, organic pollutants, food additives). At the same time, we critically discuss the advantages and disadvantages of artificial nanochannel sensor detection, as well as the restrictions and solutions of detection, and finally look forward to the challenges and development prospects of food safety detection technology based on the limitations of artificial nanochannel detection. We expect to provide a theoretical basis and inspiration for the development of rapid real-time detection technology for food hazards and the production of portable detection equipment in the future.

6.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731552

ABSTRACT

Herein, we have developed a new approach for the synthesis of indolizine via Cu-catalyzed reaction of pyridine, acetophenone, and nitroolefin under mild conditions in high yields. This reaction involved the formation of C-N and C-C bonds and new indolizine compounds with high stereoselectivity and excellent functional group tolerance.

7.
Inorg Chem ; 63(19): 8775-8781, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696247

ABSTRACT

The atomic precision of the subnanometer nanoclusters has provided sound proof on the structural correlation of metal complexes and larger-sized metal nanoparticles. Herein, we report the synthesis, crystallography, structural characterization, electrochemistry, and optical properties of a 133-atom intermetallic nanocluster protected by 57 thiolates (3-methylbenzenethiol, abbreviated as m-MBTH) and 3 chlorides, with the formula of Ag125Cu8(m-MBT)57Cl3. This is the largest Ag-Cu bimetallic cluster ever reported. Crystallographic analysis revealed that the nanocluster has a three-layer concentric core-shell structure, Ag7@Ag47@Ag71Cu8S57Cl3, and the Ag54 metal kernel adopts a D5h symmetry. The nuclei number is between that of the previously reported large silver cluster [Ag136(SR)64Cl3Ag0.45]- and the large silver-rich cluster Au130-xAgx(SR)55 (x = 98). All these three clusters bear a similar metallic core structure, while the main structural difference lies in the shell motif structures. Electron counting revealed an open electron shell with 73 delocalized electrons, which was verified by the electron paramagnetic resonance analysis. The DPV electrochemical measurement indicates a multielectron state quantization double-layer charging shape and single-electron sequential charging and discharging characteristic of the AgCu alloy cluster. In addition, the open-hole Z-scan test reveals the nonlinear optical absorption (2-3 optical absorption in the NIR-II/III region) of Ag125Cu8 nanoclusters.

8.
BMC Psychol ; 12(1): 199, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605422

ABSTRACT

BACKGROUND: Artificial intelligence-powered interventions have emerged as promising tools to support autistic individuals. However, more research must examine how teachers and educators perceive and experience these AI systems when implemented. OBJECTIVES: The first objective was to investigate informants' perceptions and experiences of AI-empowered interventions for children with autism. Mainly, it explores the informants' perceived benefits and challenges of using AI-empowered interventions and their recommendations for avoiding the perceived challenges. METHODOLOGY: A qualitative phenomenological approach was used. Twenty educators and parents with experience implementing AI interventions for autism were recruited through purposive sampling. Semi-structured and focus group interviews conducted, transcribed verbatim, and analyzed using thematic analysis. FINDINGS: The analysis identified four major themes: perceived benefits of AI interventions, implementation challenges, needed support, and recommendations for improvement. Benefits included increased engagement and personalized learning. Challenges included technology issues, training needs, and data privacy concerns. CONCLUSIONS: AI-powered interventions show potential to improve autism support, but significant challenges must be addressed to ensure effective implementation from an educator's perspective. The benefits of personalized learning and student engagement demonstrate the potential value of these technologies. However, with adequate training, technical support, and measures to ensure data privacy, many educators will likely find integrating AI systems into their daily practices easier. IMPLICATIONS: To realize the full benefits of AI for autism, developers must work closely with educators to understand their needs, optimize implementation, and build trust through transparent privacy policies and procedures. With proper support, AI interventions can transform how autistic individuals are educated by tailoring instruction to each student's unique profile and needs.


Subject(s)
Autistic Disorder , Educational Personnel , Child , Humans , Autistic Disorder/therapy , Artificial Intelligence , Learning , Students
9.
Insects ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667366

ABSTRACT

Parental care behavior has evolved as a life history strategy to improve reproductive success, particularly in organisms facing challenging environments. However, the variation in maternal care, such as egg-guarding behavior in response to the social environment and the associated ecological consequence of competition, remains largely unknown. This study addresses a gap in current knowledge by examining the plasticity of maternal care behavior in the predatory mite C. eruditus and its impact on offspring survival and intra- and interspecific competition. Our results demonstrated that the reproductive females frequently exhibit egg-guarding behaviors, with enhanced maternal care efforts when the interspecific competitor is present. Egg masses are significantly more vulnerable to predation in the absence of maternal care. Guarding females increased egg survival rates and adversely influenced the survival of both con- and heterospecific competitors, with higher mortality rates being detected. Our findings highlight the ecological significance of maternal care behaviors and suggest that releasing C. eruditus and Neoseiulus cucumeris (Oudemans) together is not recommended for pest management in storage products.

10.
Insects ; 15(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38667381

ABSTRACT

Diorhabda rybakowi Weise is one of the dominant pests feeding on Nitraria spp., a pioneer plant used for windbreaking and sand fixation purposes, and poses a threat to local livestock and ecosystems. To clarify the key olfactory genes of D. rybakowi and provide a theoretical basis for attractant and repellent development, the optimal reference genes under two different conditions (tissue and sex) were identified, and the bioinformatics and characterization of the tissue expression profiles of two categories of soluble olfactory proteins (OBPs and CSPs) were investigated. The results showed that the best reference genes were RPL13a and RPS18 for comparison among tissues, and RPL19 and RPS18 for comparison between sexes. Strong expressions of DrybOBP3, DrybOBP6, DrybOBP7, DrybOBP10, DrybOBP11, DrybCSP2, and DrybCSP5 were found in antennae, the most important olfactory organ for D. rybakowi. These findings not only provide a basis for further in-depth research on the olfactory molecular mechanisms of host-specialized pests but also provide a theoretical basis for the future development of new chemical attractants or repellents using volatiles to control D. rybakowi.

11.
Poult Sci ; 103(6): 103670, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38598909

ABSTRACT

Aging is associated with alterations in gut function, including intestinal inflammation, leaky gut, and impaired epithelial regeneration. Rejuvenating the aged gut is imperative to extend the laying cycle of aged laying hens. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aged gut of laying hens remains to be elucidated. In this study, 160 45-wk-old Hyline Brown laying hens were continuously fed a basal diet or a diet supplemented with 40 mg/kg genistein until they reached 100 wk of age. The results revealed that long-term genistein supplementation led to an improvement in the egg production rate and feed conversion ratio, as well as an increase in egg quality. Moreover, the expression levels of senescence markers, such as ß-galactosidase, P16, and P21, were decreased in the gut of genistein-treated aged laying hens. Furthermore, genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. Treg cell-derived IL-10 plays a crucial role in the genistein-induced regulation of age-related intestinal inflammation. This study demonstrates that long-term consumption of genistein improves homeostasis in the aged gut and extends the laying cycle of aged laying hens. Moreover, the link between genistein and Treg cells provides a rationale for dietary intervention against age-associated gut dysfunction.

12.
Front Plant Sci ; 15: 1367862, 2024.
Article in English | MEDLINE | ID: mdl-38601307

ABSTRACT

Beneficial bacteria that promote plant growth can shield plants from negative effects. Yet, the specific biological processes that drive the relationships between soil microbes and plant metabolism are still not fully understood. To investigate this further, we utilized a combination of microbiology and non-targeted metabolomics techniques to analyze the impact of plant growth-promoting bacteria on both the soil microbial communities and the metabolic functions within ramie (Boehmeria nivea) tissues. The findings indicated that the yield and traits of ramie plants are enhanced after treatment with Bacillus velezensis (B. velezensis). These B. velezensis strains exhibit a range of plant growth-promoting properties, including phosphate solubilization and ammonia production. Furthermore, strain YS1 also demonstrates characteristics of IAA production. The presence of B. velezensis resulted in a decrease in soil bacteria diversity, resulting in significant changes in the overall structure and composition of soil bacteria communities. Metabolomics showed that B. velezensis significantly altered the ramie metabolite spectrum, and the differential metabolites were notably enriched (P < 0.05) in five main metabolic pathways: lipid metabolism, nucleotide metabolism, amino acid metabolism, plant secondary metabolites biosynthesis, and plant hormones biosynthesis. Seven common differential metabolites were identified. Correlation analysis showed that the microorganisms were closely related to metabolite accumulation and yield index. In the B. velezensis YS1 and B. velezensis Y4-6-1 treatment groups, the relative abundances of BIrii41 and Bauldia were significantly positively correlated with sphingosine, 9,10,13-TriHOME, fresh weight, and root weight, indicating that these microorganisms regulate the formation of various metabolites, promoting the growth and development of ramie. Conclusively, B. velezensis (particularly YS1) played an important role in regulating soil microbial structure and promoting plant metabolism, growth, and development. The application of the four types of bacteria in promoting ramie growth provides a good basis for future application of biological fertilizers and bio-accelerators.

13.
Natl Sci Rev ; 11(4): nwae063, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623453

ABSTRACT

The Chinese Bayan Obo deposit is a world-class rare earth element (REE) deposit with considerable niobium (Nb) and iron (Fe) resources. A complete genetic understanding on all metals is fundamental for establishing genetic models at Bayan Obo. With extensive research being focused on REE enrichment, the timing and controls of Nb enrichment remain unresolved at Bayan Obo, which is mainly due to the challenges in dating, i.e. multistage thermal events, fine-grained minerals with complex textures and the rare occurrence of uranium-enriched minerals with mature dating methods. Based on robust geological and petrographic frameworks, here we conducted ion probe uranium-lead (U-Pb) dating of ferrocolumbite to unravel the timing, hence the genesis of Nb mineralization. Three types of hydrothermal ferrocolumbites-key Nb-bearing minerals-are identified based on their textures and mineral assemblages. They yield U-Pb ages of 1312 ± 47 Ma (n = 99), 438 ± 7 Ma (n = 93), and 268 ± 5 Ma (n = 19), respectively. In line with deposit geology, we tentatively link the first, second and third stage Nb mineralization to Mesoproterozoic carbonatite magmatism, ubiquitous early Paleozoic hydrothermal activity, and Permian granitic magmatism, respectively. While quantifying the contribution of metal endowment from each stage requires further investigation, our new dates highlight that multi-stage mineralization is critical for Nb enrichment at Bayan Obo, which may also have implications for the enrichment mechanism of Nb in REE deposits in general.

14.
J Agric Food Chem ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602422

ABSTRACT

In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers. Based on this, this paper examines recent advancements in nanomaterials for the design of stimulus-responsive micro-/nanocarriers. It delves into the intricacies of preparation methods, material enhancements, in vivo/ex vivo controlled release, and application techniques for controlled release formulations. The aim is to provide a crucial reference for harnessing nanotechnology to pursue reduced pesticide use and increased efficiency.

15.
Cytokine ; 179: 156598, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38583255

ABSTRACT

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.

16.
PLoS One ; 19(4): e0297912, 2024.
Article in English | MEDLINE | ID: mdl-38573995

ABSTRACT

The bulkhead additional thrust during shield tunneling, the force of friction between shield and soil, and the additional grouting pressure can cause additional stress in the surrounding soil, thereby disturbing existing buildings and structures. However, few studies focused on the disturbance situation when the shield tunneling machine approaches the receiving well. If the additional stress and deformation of the receiving well are too excessive, it could result in the collapse of the receiving well. Based on the two-stage method, this study derived the calculation formula of the additional stress and deformation of the receiving well enclosure structure caused by shield tunneling. Taking a shield machine receiving engineering as the context, this study established a numerical simulation model and compared theoretical calculation, the results of numerical simulation model and on-site monitoring data. Finally, the additional stress of the receiving well is analyzed. The research findings demonstrate that the theoretical prediction results, numerical simulation calculation results, and on-site monitoring data exhibit relatively small calculation errors, which validated the applicability of the theoretical prediction formula and numerical simulation model. As the distance between the shield machine and the receiving well decreases, the disturbance to the receiving well increases sharply. When the distance between the cutter head and the receiving well is less than three times the shield length, it is crucial to enhance the deformation monitoring of the receiving well. The primary factors affecting the additional load and deformation of the receiving well enclosure structure are the force of friction between shield and soil and the additional thrust of the cutterhead. The disturbance caused by the additional grouting pressure on the enclosure structure can be ignored.


Subject(s)
Engineering , Protective Devices , Computer Simulation , Friction , Soil
17.
Adv Mater ; : e2401151, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558183

ABSTRACT

Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.

18.
J Colloid Interface Sci ; 667: 543-552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657538

ABSTRACT

The electrocatalytic production of "green hydrogen", such as through the electrolysis of water or urea has been vigorously advocated to alleviate the energy crisis. However, their electrode reactions including oxygen evolution reaction (OER), urea oxidation reaction (UOR), and hydrogen evolution reaction (HER) all suffer from sluggish kinetics, which urgently need catalysts to accelerate the processes. Herein, we design and prepare an OER/UOR/HER trifunctional catalyst by transforming the homemade CoO nanorod into a two-dimensional (2D) ultrathin heterojunction nickel-iron-cobalt hybrid phosphides nanosheet (NiFeP/CoP) via a hydrothermal-phosphorization method. Consequently, a strong electronic interaction was found among the Ni2P/FeP4/CoP heterogeneous interfaces, which regulates the electronic structure. Besides the high mass transfer property of 2D nanosheet, Ni2P/FeP4/CoP displays improved OER/UOR/HER performance. At 10 mA cm-2, the OER overpotential reaches 274 mV in 1.0 M KOH, and the potential of UOR is only 1.389 V in 1.0 M KOH and 0.33 M urea. More strikingly, the two-electrode systems for electrolysis water and urea-assisted electrolysis water assembled by NiFeP/CoP could maintain long-term stability for 35 h and 12 h, respectively. This work may help to pave the way for upcoming research horizons of multifunctional electrocatalysts.

19.
Pathol Res Pract ; 257: 155312, 2024 May.
Article in English | MEDLINE | ID: mdl-38663177

ABSTRACT

Current treatments for orthopaedic illnesses frequently result in poor prognosis, treatment failure, numerous relapses, and other unpleasant outcomes that have a significant impact on patients' quality of life. Cell-free therapy has emerged as one of the most promising options in recent decades for improving the status quo. As a result, using exosomes produced from various cells to modulate ferroptosis has been proposed as a therapeutic method for the condition. Exosomes are extracellular vesicles that secrete various bioactive chemicals that influence disease treatment and play a role in the genesis and progression of orthopaedic illnesses. Ferroptosis is a recently defined kind of controlled cell death typified by large iron ion buildup and lipid peroxidation. An increasing number of studies indicate that ferroptosis plays a significant role in orthopaedic illnesses. Exosomes, as intercellular information transfer channels, have been found to play a significant role in the regulation of ferroptosis processes. Furthermore, accumulating research suggests that exosomes can influence the course of many diseases by regulating ferroptosis in injured cells. In order to better understand the processes by which exosomes govern ferroptosis in the therapy of orthopaedic illnesses. This review discusses the biogenesis, secretion, and uptake of exosomes, as well as the mechanisms of ferroptosis and exosomes in the therapy of orthopaedic illnesses. It focuses on recent research advances and exosome mechanisms in regulating iron death for the therapy of orthopaedic illnesses. The present state of review conducted both domestically and internationally is elucidated and anticipated as a viable avenue for future therapy in the field of orthopaedics.


Subject(s)
Exosomes , Ferroptosis , Ferroptosis/physiology , Humans , Exosomes/metabolism , Animals , Iron/metabolism
20.
Front Neurosci ; 18: 1254600, 2024.
Article in English | MEDLINE | ID: mdl-38510463

ABSTRACT

Background and purpose: Cervical Spondylotic Myelopathy (CSM), the most common cause of spinal cord dysfunction globally, is a degenerative disease that results in non-violent, gradual, and long-lasting compression of the cervical spinal cord. The objective of this study was to investigate whether microvascular proliferation could positively affect neural function recovery in experimental cervical spondylotic myelopathy (CSM). Methods: A total of 60 male adult Sprague-Dawley (SD) were randomly divided into four groups: Control (CON), Compression (COM), Angiostasis (AS), and Angiogenesis (A G),with 15 rats in each group. Rats in the AS group received SU5416 to inhibit angiogenesis, while rats in the AG group received Deferoxamine (DFO) to promote angiogenesis. Motor and sensory functions were assessed using the Basso Beattie Bresnahan (BBB) scale and somatosensory evoked potential (SEP) examination. Neuropathological degeneration was evaluated by the number of neurons, Nissl bodies (NB), and the de-myelination of white matter detected by Hematoxylin & Eosin(HE), Toluidine Blue (TB), and Luxol Fast Blue (LFB) staining. Immunohistochemical (IHC) staining was used to observe the Neurovascular Unit (NVU). Results: Rats in the CON group exhibited normal locomotor function with full BBB score, normal SEP latency and amplitude. Among the other three groups, the AG group had the highest BBB score and the shortest SEP latency, while the AS group had the lowest BBB score and the most prolonged SEP latency. The SEP amplitude showed an opposite performance to the latency. Compared to the COM and AS groups, the AG group demonstrated significant neuronal restoration in gray matter and axonal remyelination in white matter. DFO promoted microvascular proliferation, especially in gray matter, and improved the survival of neuroglial cells. In contrast, SU-5416 inhibited the viability of neuroglial cells by reducing micro vessels. Conclusion: The microvascular status was closely related to NVU remodeling an-d functional recovery. Therefore, proliferation of micro vessels contributed to function -al recovery in experimental CSM, which may be associated with NVU remodeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...